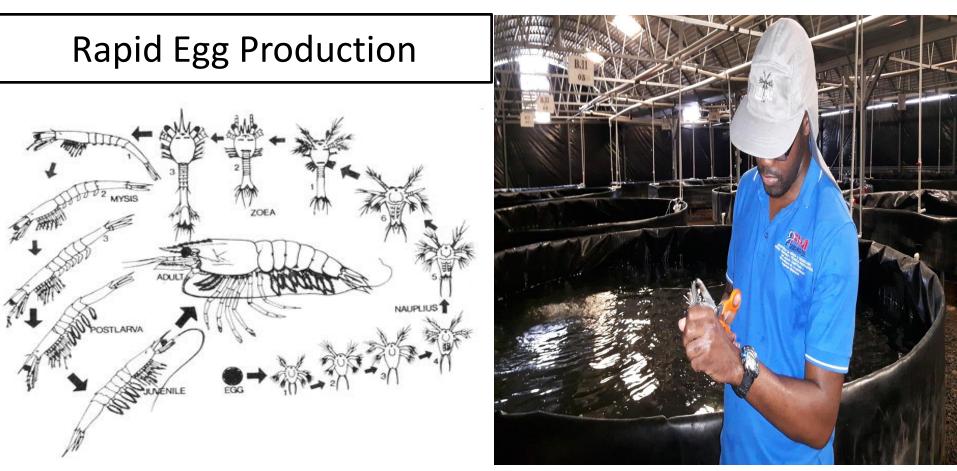


Use of non-ablation in Shrimp hatcheries: production and animal welfare

Simão Zacarias, PhD


Postdoctoral Research Fellow

simao.zacarias1@stir.ac.uk

BE THE DIFFERENCE

Shrimp Hatcheries: Unilateral eyestalk ablation

Eyestalk ablation X Welfare Issues

Non-ablation PROJECT part 1

ELSEVIER

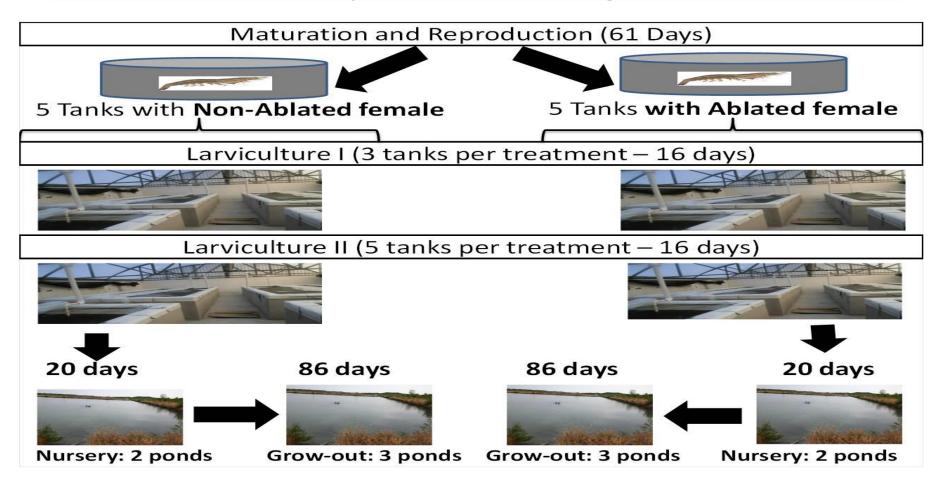
Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Reproductive performance and offspring quality of non-ablated Pacific white shrimp (*Litopenaeus vannamei*) under intensive commercial scale conditions

Simão Zacarias*, Stefano Carboni, Andrew Davie, David C. Little*


Institute of Aquaculture - University of Stirling, FK9 4LA Stirling-Scotland, UK

Experimental design

Table 1: Reproductive performance of non-ablated and ablated female

Reproductive Performance							
Study I	NAF	AF					
Mating success per day (%)	3.2 ± 0.0^{b}	7.6 ± 0.0^{a} Sex ratio 1:2					
Spawning event day (%)	90.1± 0.1 ^a	95.5 ± 0.0^{a}					
Hatching rate per day (%)	78.0 ± 0.0^{a}	81.7 ± 0.0^{a}					
Mortality of female per day (%)***	1.3 ± 0.0^{b}	2.3 ± 0.0^{a}					
Number of eggs/spawned female/day	$142\;413\pm4558\;{}^{a}$	$116\ 752 \pm 3568\ ^{b}$					
Number of nauplii/spawned female/day	$112\ 610\pm4923\ ^{a}$	95 127 ± 2954 ^b					
Number of eggs/tank/day	811 004 ± 86 858 ^b	1440 285.7 \pm 116 344 $^{\rm a}$					
Number of nauplii/tank/day	$653\ 004 \pm 73\ 466\ ^{b}$	1186 450 \pm 103 853 $^{\rm a}$					

NAF - non-ablated; **AF** - ablated female

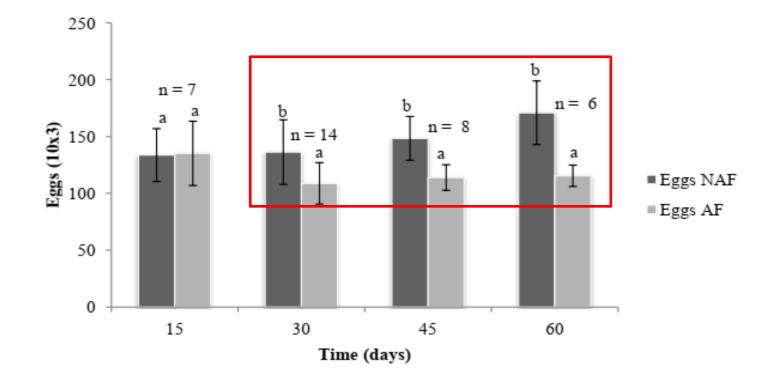


Fig. 1: Egg production per non-ablated (NAF) and ablated female (AF) over time

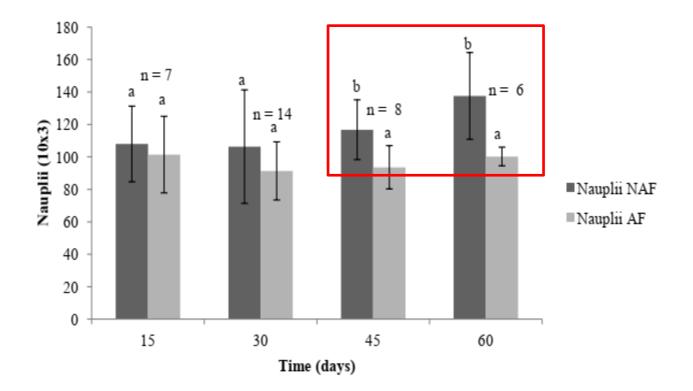


Fig. 2: Nauplii production per non-ablated (NAF) and ablated female (AF) over time

Larval growth and development of non-ablated and ablated female

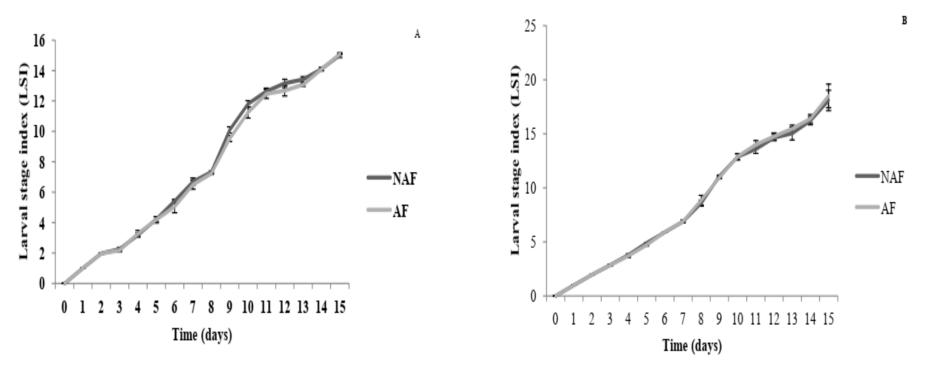


Fig. 3: Larval stage index from non-ablated (NAF) and ablated female (AF)

Table 3: Growth performance, final survival and survival of PLs from nonablated (NAF) and ablated female (AF)

Study I	Larviculture I		Larviculture II			
Parameters	NAF	AF	NAF	AF		
Survival to SST (%)	94.7 ± 2.6^{a}	85.7 ± 6.1^{a}	97.4 ± 0.2^{a}	94.9 ± 0.5^{b}		
Final survival (%)	$48.0\pm8.7^{\text{ a}}$	41.7 ± 7.0^{a}	48.8 ± 2.6^{a}	43.9 ± 5.6^{a}		
Final weight (mg)	$3.4\pm0.3~^a$	$3.7\pm0.2^{\text{ a}}$	6.5 ± 0.6^{a}	$6.7\pm0.8^{\ a}$		
Study II	Larvice	ulture III	Larviculture IV			
Parameters	NAF	AF	NAF	AF		
Eggs diameter (µm)*	269.6 ± 8.5^{a}	264.3 ± 1.3^{a}	282.4 ± 1.1^{a}	282.9 ± 2.0^{a}		
Nauplii length (µm)*	437.7 ± 5.4^{a}	451.0 ± 2.8^{a}	449.4 ± 3.1^{a}	445.2 ± 2.9^{a}		
Survival to SST (%)	$99.0\pm0.0~^a$	96.0 ± 1.0^{b}	90.0 ± 0.6^{a}	87.7 ± 0.9^{b}		
Final survival (%)	$42.6\pm3.7^{\text{ a}}$	$42.1\pm3.8~^{a}$	43.8 ± 3.3^{a}	$41.0\pm6.0~^{a}$		
Final weight (mg)	$6.7\pm0.4~^a$	6.2 ± 0.1 ^a	5.0 ± 0.6 ^a	$5.3\pm0.9^{\ a}$		
PLs length (mm)	8.9 ± 0.3 ª	8.7 ± 0.0^{a}	8.6 ± 0.4 ª	8.6 ± 0.4 ª		

Table 4: Growth performance and final survival of offspring from nonablated (NAF) and ablated female (NF)

Nursery	Stu	dy I	Study II			
Parameters	NAF	AF	NAF	AF		
Final Weight (g)	0.5 ± 0.0	0.6 ± 0.0	0.8 ± 0.0	0.8 ± 0.1		
Weekly Growth (g)	0.2 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.2 ± 0.0		
Final survival (%)	40.2 ± 7.5	45.4 ± 3.0	89.2 ± 2.3	92.2 ± 1.8		
FCR*	0.9 ± 0.1	0.7 ± 0.1	0.9 ± 0.1	0.8 ± 0.1		
Yield (Kg/ha)/ (g/m3)	273.7 ± 32.8	340.6 ± 41.1	165.4 ± 14.6	188.4 ± 22.0		
Grow-out						
Parameters	NAF	AF	NAF	AF		
Initial weight (g)	0.6 ± 0.0	0.6 ± 0.0	0.8 ± 0.0	0.8 ± 0.0		
Final weight (g)	14.7 ± 0.5	14.9 ± 0.2	14.3 ± 0.0	14.5 ± 0.3		
weight gain (g)	14.1 ± 0.5	14.2 ± 0.2	13.5 ± 0.0	13.7 ± 0.3		
Weekly Growth (g)	1.2 ± 0.0	1.2 ± 0.0	3.1 ± 0.0	3.2 ± 0.01		
SGR (%)**	3.7 ± 0.0	3.7 ± 0.0	8.9 ± 0.0	8.9 ± 0.1		
Final survival (%)	51.7 ± 0.9	47.7 ± 2.5	93.0 ± 1.4	95.9 ± 0.8		
FCR	1.3 ± 0.1	1.3 ± 0.1	0.7 ± 0.0	0.8 ± 0.0		
Yield (Kg/ha)/ $(g/m^3)^{***}$	1875.2 ± 27.6	1776.6 ± 82.8	591.6 ± 8.6	617.7 ± 7.5		

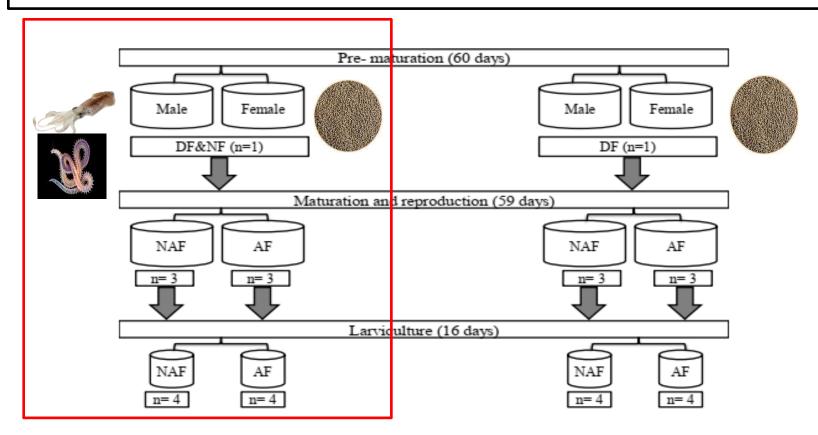
Key points

1. Egg commercial production with non-ablated female can depend on SEX RATIO change

2. Non-ablation does not affect larval, post-larlavae and juveniles growth performance and survival

3. Offsping of non-ablated animals might be more resistant to environmental stress

Non-ablation PROJECT part 2


Literature Review

Effect of pre-maturation conditioning on **broodstock reproductive performance** and **offspring quality** of nonablated Pacific white shrimp (*Litopenaeus vannamei*)

Experimental design

DF – Dry feed; **NF** – Natural Feed; **NAF** - Non-ablated female; **AF** - Ablated female

Results

Table 1: Sperm quality during pre-maturationDF – Dry feed; NF – Natural Feed

Time (Days)		1		22		45	Signficance		
Parameters	DF&NF	DF	DF&NF	DF	DF&NF	DF	F T FxT		
GSI (%) (n= 10)	$1.5\pm~0.3^{ab}$	$1.7\pm~0.6^{ab}$	$0.9\pm\ 0.1^b$	2.4 ± 0.2^{a}	$1.7\pm~0.4^{ab}$	$1.5\pm~0.3^{ab}$	ns ns *		
HPSI (%) (n= 10)	$3.5\pm\ 0.2$	3.5 ± 0.3	3.4± 0.1	$4.2\pm\ 0.2$	3.1 ± 0.3	3.1 ± 0.3	ns * ns		
Spermatophore weight (mg) (n= 7)	35.2 ± 2.5	30.4 ± 2.9	$38.5\pm~4.6$	$46.0\pm~4.6$	$43.0\pm~3.3$	$50.6\pm~5.9$	ns * ns		
Sperm Count (10^6) (n= 7)	17.5 ± 2.5	11.8 ± 1.9	24.1 ± 4.5	28.9 ± 5.2	35.6 ± 3.2	24.1 ± 4.0	ns * ns		
Dead Sperm (%) $(n=7)$	21.1 ± 7.4	$22.8\pm~7.4$	$28.2\pm\ 8.7$	$17.2\pm~3.8$	$28.3\pm\ 6.0$	32.2 ± 2.7	ns ns ns		

	DF&NF DF		Sign	nific	cance		
Parameters	NAF	AF	NAF	AF	F	A	FxA
Mating success per day (%)	$5.8\pm~0.5$	$6.9\pm~0.6$	3.8 ± 0.1	$7.0\pm~0.7$	ns	*	ns
Spawning event per day (%)	92.1 ± 1.9	$90.0\pm\ 0.9$	$92.3\pm~0.7$	91.8 ± 1.9	ns	ns	ns
Hatching rate per day (%)	55.5 ± 1.0	53.1 ± 1.4	50.6 ± 1.4	51.3 ± 1.0	*	ns	ns
Fertilization rate (%)	$78.4\pm~0.5^{\rm a}$	70.5 ± 1.4^{b}	69.7 ± 2.1^{b}	$68.6\pm~0.5^{\rm b}$	*	*	*
Number of eggs/spawned female/day	158090 ± 8212	140364 ± 2351	169938 ± 2341	146582 ± 3372	ns	*	ns
Number of nauplii/spawned female/day	85708.1 ± 1984.1	71942 ± 2261	85049 ± 3180	74474 ± 2109	ns	*	ns
Number of eggs/tank/day	924598 ± 70823	1142248 ± 66564	851764 ± 46620	1165342 ± 24034	ns	*	ns
Number of nauplii/tank/day	506501 ± 34489	590934 ± 35189	453077 ± 25441	594259 ± 13703	ns	*	ns
Mortality of female per day (%)	5.0 ± 1.2	3.8 ± 0.3	3.5 ± 0.1	$4.9\pm~0.9$	ns	ns	ns

DF – Dry feed; **NF** – Natural Feed; **NAF** - Non-ablated female; **AF** - Ablated female

Table 3.		Parameters (mg/g)*	Squid	Polychaete	Dry Feed
	ר	Proteins	907.2 ± 23.8^{a}	414.0 ± 10.3^{b}	$357.7 \pm 1.5^{\circ}$
		Carbohydrates	30.3 ± 4.4^{b}	46.6 ± 3.7^{b}	274.4 ± 11.0^{a}
io_		Total lipids	121.9 ± 1.3^{b}	137.7 ± 1.8^{a}	117.4 ± 0.1^{b}
sit		Total saturated	$16.6\pm\ 0.4^a$	15.3 ± 1.3^{a}	17.7 ± 0.3^{a}
composition		Total monounsaturated	6.3 ± 0.0^{b}	3.6 ± 0.4^{c}	$23.5\pm~0.3^{a}$
		Total n-6 PUFA	1.3 ± 0.0^{b}	$0.9\pm\ 0.0^c$	$25.5\pm~0.4^a$
		Total n-3 PUFA	31.5 ± 1.3^{a}	20.2 ± 0.4^{b}	$9.5\pm0.1^{\circ}$
Feed		18:2n-6	$0.2 \pm 0.0^{\circ}$	0.9 ± 0.0^{b}	24.8 ± 0.4^{a}
Ľ۳		20:4n-6	0.4 ± 0.0^{a}	$0.4\pm~0.0^a$	0.3 ± 0.0^{a}
		20:5n-3	8.1 ± 0.4^{a}	8.1 ± 0.4^{a}	3.7 ± 0.1^{b}
	-	22:6n-3	22.5 ± 0.9^{a}	3.1 ± 0.4^{b}	$0.2 \pm 0.1^{\circ}$

Table 4: Larval growth performance and survival

Zacarias et al. Under prep.

	DF&NF]	DF		Significance		
Parameters	NAF	AF	NAF	AF	F	Α	FxA	
LSI at Z1	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	ns	ns	ns	
LSI at M1	3.9 ± 0.0	3.7 ± 0.2	3.7 ± 0.1	3.9 ± 0.1	ns	ns	ns	
LSI at PL1	6.7 ± 0.1	6.6 ± 0.1	6.6 ± 0.1	6.7 ± 0.09	ns	ns	ns	
LSI at PL10	15.4 ± 0.2	15.3 ± 0.2	15.6 ± 0.1	15.6 ± 0.1	ns	ns	ns	
Survival to SST PL10-11 (%)	88.5 ± 2.9	82.7 ± 5.1	90.0 ± 2.5	80.0 ± 1.2	ns	*	ns	
Final weight (mg)	2.2 ± 0.0	2.2 ± 0.3	2.4 ± 0.3	2.2 ± 0.0	ns	ns	ns	
Final Survival (%)	37.1 ± 3.9	34.8 ± 1.6	41.0 ± 3.7	30.4 ± 2.2	ns	ns	ns	
Parameters (mg/g)	NAF	AF	NAF	AF	F	Α	FxA	
Total lipids	22.9 ± 1.4	20.0 ± 0.4	19.3 ± 0.8	19.7 ± 0.9	ns	ns	ns	
Total saturated	2.4 ± 0.1	2.3 ± 0.0	1.8 ± 0.4	2.4 ± 0.1	ns	ns	ns	
Total monounsaturated	2.0 ± 0.1	$1.9\pm\ 0.0$	1.5 ± 0.3	2.2 ± 0.1	ns	ns	ns	
Total n-6 PUFA	1.5 ± 0.3	1.5 ± 0.0	1.2 ± 0.2	1.7 ± 0.1	ns	ns	ns	
Total n-3 PUFA	1.9 ± 0.2	1.9 ± 0.0	1.4 ± 0.3	1.9 ± 0.1	ns	ns	ns	
18:2n-6	$1.0\pm~0.0$	$1.1\pm\ 0.0$	0.8 ± 0.2	1.2 ± 0.1	ns	ns	ns	
20:4n-6	0.3 ± 0.0	$0.3\pm\ 0.0$	0.2 ± 0.0	0.3 ± 0.0	*	ns	ns	
20:5n-3	$0.7\pm\ 0.1$	$0.8\pm\ 0.1$	0.6 ± 0.1	$0.8\pm~0.0$	ns	ns	ns	
22:6n-3	$0.9\pm~0.0$	$0.9\pm~0.0$	0.7 ± 0.0	0.9 ± 0.0	ns	ns	ns	
					-			

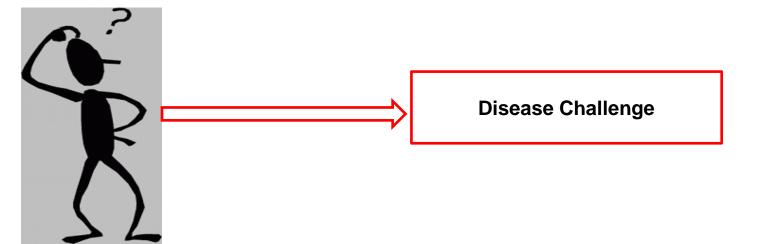
DF – Dry feed; NF – Natural Feed; NAF - Non-ablated female; AF - Ablated female

Key points

1. Supplementing squid and polychaete in pre-maturation is a potential key step to success of non-ablated shrimp female

2. Non-ablation does not affect larval and post-larlavae growth performance and survival

3. Offspring of non-ablated animals might be more resistant to environmental stress


Non-ablation PROJECT part 3

Salinity stress test: Non-ablated shrimp broodstock produced ROBUST OFFSPRING

Focus :

Is there a link between non-ablation and the "fitness" of the offspring?

Contents lists available at ScienceDirect

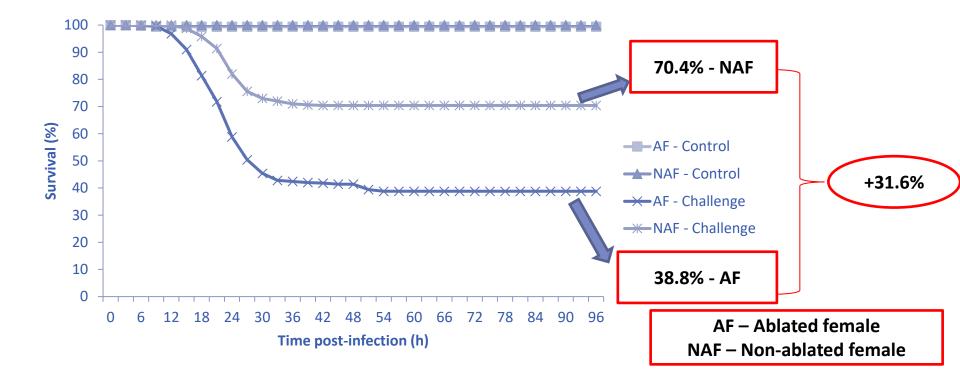
Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

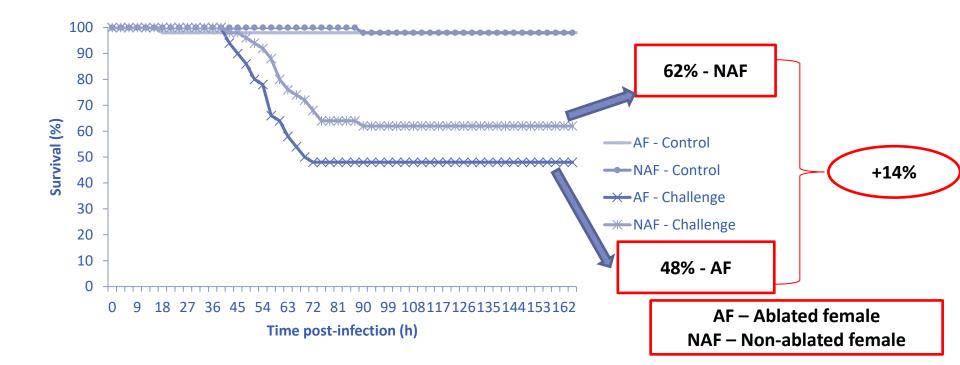
Increased robustness of postlarvae and juveniles from non-ablated Pacific whiteleg shrimp, *Penaeus vannamei*, broodstock post-challenged with pathogenic isolates of *Vibrio parahaemolyticus* (Vp_{AHPND}) and white spot disease (WSD)

Simão Zacarias^{a,*}, Daniel Fegan^b, Siriroj Wangsoontorn^b, Nitrada Yamuen^c, Tarinee Limakom^c, Stefano Carboni^a, Andrew Davie^a, Matthijs Metselaar^d, David C. Little^a, Andrew P. Shinn^{a,c,d}

Experimental Set Up



1. Challenge *P. Vannamei* Postlarvae with AHPND/EMS


2. Challenge *P. Vannamei* Juveniles with WSD

Results 1. Survival of *P. vannamei* Postlarvae challenged with and without AHPND/EMS

2. Survival of *P. vannamei* Juveniles challenged with and without WSSV

Key points

1. Offspring of non-ablated female are robust and more resistant to typical diseases

2. Validation of the data under commercial conditions are still required

3. Understanding mechanistic factors contributing to robustness improvement of offspring from non-ablated is also required

Final considerations

1. Adopting Non-ablation will require change in some practices including SEX RATIO MANIPULATION and/or include or improve pre-maturation conditioning

2. Non-ablation does not affect larvae, post-larlavae and juvenile growth performance and survival under normal conditions

3. Offspring of non-ablated female are more resistant to diseases

Other Key Considerations

1. Broodstock Genetic or Strain: different response to non-ablation

2. Selective breeding program: Increase selection frequency

3. Maturation system: RAS or flowthrough

Global use of Non-Ablation

simao.zacarias1@stir.ac.uk

THANK YOU!

quaculture ractices

